
Xilinx-Lava User Guide
6 Parametrization
This tutorial illustrates how the features of Lava can be used to design parametrized cir-
cuits that can be used as building blocks in larger designs. Parametrized circuits, or
parametrized ‘cores’, feature a number of functional and implementation alternatives
that are selected by parameters provided at the design interface. Parametrization can be
used to make a library of common functions available to users whilst providing flexibil-
ity and hiding the low-level details of the designs. The steps in describing a CORDIC
processor are given here to demonstrate how the features of Lava can be used to param-
etrize the function, resource usage and performance of designs. Figure 6.1 shows the
implementation of the CORDIC processor iteration described in this tutorial.

Figure 6.1 CORDIC processor iteration implementation.

Σ

m0

m1

p

+/-

c0
c1

0

1

c2
c3

Σ

+/-

Σ

+/->>i

>>i

< 0

< 0

a

b

a

a

b

mode set linear

eCir eHyp eLin

x

y

z

i

i

i

x

y

z

i+1

i+1

i+1

iii
37

The CORDIC processor implements the COordinate Rotational Digital Computer
(CORDIC) Algorithm. This was developed by Volder[1] to implement trigonometric
equations and was later extended by Walther[2] to implement a larger range of equa-
tions, including hyperbolic and square root equations. The CORDIC algorithm is an
iterative method that computes these functions using only shifts and adds. It is designed
to compute a range of equation sets and modes. Each iteration computes three equa-
tions, the result of which depends on the desired set and mode. The general function of
the iteration can be expressed with the following equations:

where:

The iteration design in Figure 6.1 is a direct implementation of the above equations.
This consists of 3 adder/subtractors, two shifters and control logic for selecting the
adder/subtractor mode. The complete design can be implemented by completely unroll-
ing the iterations, by composing them in series, or by partially unrolling the iterations
and including some additional control logic to perform resource sharing. All arithmetic
is 2’s complement fixed-point arithmetic.

The circuit is controlled by the input signals: mode, set and linear. The control logic
takes these signals as inputs and outputs the adder/subtractor control signals. All adder/
subtractors have a add/sub input that when low, selects add mode and when high, selects
subtract mode. The top adder/substractor includes an input p that when high passes the
input a directly to the output. The lower adder/subtractor has two inputs m0 and m1 that
select between 4 constants (as described in the previous tutorial). The variables di and m
take the value of 1, -1, 0, and so their effect on the result can be computed by selecting
the add/sub mode. The constants ei, are provided in the constant adder/subtractor. The

shifters are constant shifters that implement the 2i term by a left shift of i places.

xi 1+ xi 2
i–
mdiyi–=

yi 1+ yi 2
i–
dixi–=

zi 1+ zi diei–=

di
if zi 0< then 1– else 1 for rotation mode

if yi 0< then 1 else -1 for vector mode
⎩
⎪
⎨
⎪
⎧

=

ei

2
i–

()atan for circular equation set

2
i–

()atanh for hyperbolic equation set

2
i–
 for linear equation set⎩

⎪
⎪
⎨
⎪
⎪
⎧

=

m
1 for circular equation set

1– for hyperbolic equation set

0 for linear equation set⎩
⎪
⎨
⎪
⎧

=

38

Composition
In this tutorial we shall how illustrate how to describe the CORDIC design such that the
number of iterations, arithmetic precision and degree of pipelining are all provided as
design parameters.

6.1 Composition

The design can be divided into three types of circuit: the adder/subtractors, the constant
shifters and the control logic. The constant shifters can be implemented as wires and
hence do not require layout. Since we assume 2’s complement arithmetic, the < 0 opera-
tor can also be implemented as a wire by selecting the most-significant bit (MSB) from
the yi and zi inputs. The adder/subtractors are variations on the design in the previous
tutorial and have the same layout. In this section we shall first show how the control
logic can be composed, second demonstrate how parametrized wiring circuits can be
described and third show how all the blocks can be composed together.

From the previous tutorial, and the fact that there are no more than 4-inputs, we know
that the adder/subtractor designs will occupy a single slice column. One possible layout
is to place the adders beside each other horizontally. The adder/subtractors each have a
unique add/sub input signal originating from the control logic. The control logic can be
mapped to three LUTs, each of which place efficiently under their corresponding adder/
subtractor. To composition involves composing the 3 LUTs in series, and then compos-
ing the result in series below the second inputs of the adder/subtractors (the add/sub
inputs). The series composition is shown in Figure 6.2.

Figure 6.2 Series composition of the control logic. The brackets indicate the position of the brackets
in the input and output types of each composition and wiring function.

0

1yin

pre

fsT

mid post

zin

mode

linear

set

(
)

(
(

(

(
)

)
)

(

(
(

(

)
)

)
)
)

(
((

))

)

sx

sy

sz

hpar2
39

Composition
This composition can be described in Lava as follows:

invMuxFunc :: Bool -> Bool -> Bool -> Bool
invMuxFunc mode zmsb ymsb = muxFn mode (not zmsb) ymsb

xorNotAnd :: Bool -> Bool -> Bool -> Bool
xorNotAnd a s l = (a /= s) && (not l)

modeLogic :: Bit -> Bit -> Bit -> (Bit, Bit) -> (Bit, Bit, Bit)
modeLogic s l m
 = pre s l m >=> fsT(lut3 invMuxFunc) >=>
 mid >-> snD(inv `hpar2` lut3 xorNotAnd) >=> post
 where
 pre s l m (z, y) = ((m, z, y), (s, l))
 mid (a, (s, l)) = (a, (a, (a, s, l)))
 post (a, (b, c)) = (a, b, c)

The < 0 operator can be implemented by a function that takes a bus and returns the wire
that represents the MSB. We use the type [Bit] to represent a bus, where the head of
the list is the least-significant bit (LSB) and the last element of the list is the most-sig-
nificant bit. Therefore the < 0 operator can be implemented as a recursive function that
returns the last element of a list. This is written in Lava as follows:

takeTail [l] = l
takeTail (l:ls) = takeTail ls

The right shift operator shifts the wires in a bus by i places towards the LSB and sign
extends the result. Figure 6.3 shows the wire selection according to the bus width
parameter n, and the shift parameter i. The result is formed by taking the n-i most-sig-
nificant bits and combining them with the MSB, or sign bit, repeated i times.

Figure 6.3 Right shift operator bus selection according to the bus width parameter n and the shift
parameter i.

The right shift operation can be implemented by the following parametrized function:

rightShift n i x
 = takeTailN (n-i) x ++ fillList msb i
 where
 msb = takeTail x

MSB

LSB

n-i

i

n

40

Composition
The rightShift function takes the last (n-i) elements of the input list x (using the
function takeTailN) and concatinates these with the last element of x repeated i times
(using the function fillList). The functions takeTailN and fillList are defined
below.

takeTailNAux c [] = []
takeTailNAux 0 l = l
takeTailNAux c (l:ls) = takeTailNAux (c-1) ls

takeTailN c l = takeTailNAux (length l-c) l

fillList e 0 = []
fillList e n = e:(fillList e (n-1))

The bottom adder/subtractor of Figure 6.1 was described in the previous tutorial. The
other two adders/subtractors can be implemented by the same circuit, with the middle
adder/subtractors p input tied to ground. These are described in Lava as follows:

addSubFunc :: Bool -> Bool -> Bool -> Bool -> Bool
addSubFunc a b s p = muxFn p ((a == b) == s) a

oneBitAddSub :: Bit -> Bit -> (Bit, (Bit, Bit)) -> (Bit, Bit)
oneBitAddSub s p (cin, (a,b))
 = (sum, cout)
 where
 part_sum = lut4 addSubFunc (a, b, s, p)
 sum = xorcy (part_sum, cin)
 cout = muxcy (part_sum, (a, cin))

addSub :: Int -> Bit -> (Bit, ([Bit], [Bit])) -> ([Bit], Bit)
addSub n p (s, (a, b))
 = col n (oneBitAddSub s p) (s, zip a b)

It is now straightforward to compose the adder/subtractors in parallel with each other
and place them horizontally. Using hpar2 operator for this composition forms the input
and output wires to have the type of two nested pairs. This makes it possible to compose
the other blocks to the correct inputs in series using the fsT and snD operators. Some
additional wiring is required to seperate out the add/sub inputs for composition with the
control logic and to tidy up the outputs. The adder/subtractors are composed as follows:

addSubIter n s l c0 c1 c2 c3
 = pre >=> addSubConst4 n s l c0 c1 c2 c3 `hpar2`
 (addSub n gnd `hpar2` addSub n l) >=> post
 where
 pre ((sz, sy, sx), (za, ((ya, yb), (xa, xb))))
 = ((sz, za), ((sy, (ya, yb)), (sx, (xa, xb))))
 post ((zout, cz), ((yout, cy), (xout, cx)))
 = (zout, yout, xout)
41

Pipelining
All the circuit blocks can now be composed together to form a single iteration of the
CORDIC processor:

cordicIter i n s l m c0 c1 c2 c3
 = pre >=> snD(snD(snD(rightShift n i) `par2`
 snD(rightShift n i))) >=>
 fsT((takeTail `par2` takeTail) >=> modeLogic s l m) /\
 addSubIter n s l c0 c1 c2 c3
 where
 pre (zin, yin, xin)
 = ((zin, yin), (zin, ((yin, xin), (xin, yin))))

The CORDIC processor composition is completed by composing a number of iterations
together as a horizontal 2-sided composition. The Lava description for this is as follows:

cordic numIters bitWidth point set linear mode clk
 = hser cir
 where
 numItersInt = round numIters
 is = [0..numItersInt-1]
 c0s = [floatToBool bitWidth point e | e <- eCir]
 c1s = [floatToBool bitWidth point e | e <- eHyp]
 c2s = [floatToBool bitWidth point e | e <- eLin]
 c3s = [floatToBool bitWidth point e | e <- eLin]
 eCir = [atan(2**(-i)) | i <- [0..((numIters)-1)]]
 eHyp = [atanh(2**(-i)) | i <- [0..((numIters)-1)]]
 eLin = [(2.0**(-i)) | i <- [0..((numIters)-1)]]
 cir = [cordicIter i bitWidth set linear mode c0 c1 c2 c3 |
 (i, c0, c1, c2, c3) <- zip5 is c0s c1s c2s c3s]

Note that the constants are computed as floating point numbers and provided to the
design as it is created. The function floatToBool (given in the Appendix) converts the
floating point values to 2’s complement fixed point boolean constants. Partial applica-
tion is used to initialise the constant adder circuit with these boolean constants. The
parameter numIters determines the number of iterations that are implemented and the
parameter bitWidth determines the precision of the arithmetic. A designer can use
these parameters to trade-off the resource usage against the numerical accuracy of the
processor. An implementation giving the optimal resource usage for a given accuracy,
or the optimal accuracy for a given resource usage, can be selected by simply changing
the parameters.

6.2 Pipelining

The CORDIC design described so far, is an entirely combinational circuit. The perfor-
mance of the circuit is limited by the critical path, which passes through all of the itera-
tions. Therefore, the maximum processing rate decreases as the number of iterations,
and hence numerical accuracy, increases. The critical path can be broken by pipelining
the iterations, which increases throughput at the expense of increasing latency. In this
42

Pipelining
section we show a higher-order function can be used to parametrically pipeline the
CORDIC design, and indeed, any other design featuring a regular 2-sided composition.

Figure 6.4 shows the parameters n and p are used to determine the location of pipeline
registers. Registers are inserted on all connecting wires between the iterations. The
number of iterations is given by the parameter n and the number of pipeline stages by
the parameter p. Pipeline registers are inserted every k=n/p iterations.

Figure 6.4 Parametrized pipelining of the CORDIC processor. The number of iterations is given by
the parameter n and the number of pipeline stages by the parameter p. Pipeline registers
are inserted every k=n/p iterations.

The iterations of the CORDIC processor are represented in Lava as a list of circuits. The
processor can be pipelined by transforming this list into a list of circuits, where every
kth circuit is replaced with the original circuit composed with a pipeline register. A
higher-order function (functions where the arguments are themselves functions) can be
written in Lava to take the list of circuits, the pipeline circuit and perform the transfor-
mation. This function can be written as a simple recursion in Lava:

addPipe i k [] pipe = []
addPipe 1 k (c:cs) pipe = (c >-> pipe) : addPipe k k cs pipe
addPipe i k (c:cs) pipe = c : addPipe (i-1) k cs pipe

pipeline n p cirs pipe =
 addPipe k k cirs pipe
 where
 k = round (n/p)

The series composition c >-> pipe composes element c from the list with the pipeline
registers pipe. Since the pipeline registers are themselves a parameter, this approach
can be used to pipeline general 2-sided regular compositions because the correct pipe-
line registers to match the wiring pattern can be provided. The pipeline registers suitable
for the CORDIC processor are defined as follows:

zin

yin

xin

zout

yout

xout

k = n/p = 3

n = 9, p = 3
43

Exercises
pipeStage clk = pre >=> vmaP (fd clk) `hpar2` (vmaP (fd clk)
`hpar2` vmaP (fd clk)) >=> post
 where
 pre (d0, d1, d2)
 = (d0, (d1, d2))
 post (q0, (q1, q2))
 = (q0, q1, q2)

To use this pipelining function a few simple changes need to be made to the top-level
CORDIC processor function:

cordic numIters numPipes bitWidth point set linear mode clk
 = hser pipeCir
 where
 numItersInt = round numIters
 is = [0..numItersInt-1]
 c0s = [floatToBool bitWidth point e | e <- eCir]
 c1s = [floatToBool bitWidth point e | e <- eHyp]
 c2s = [floatToBool bitWidth point e | e <- eLin]
 c3s = [floatToBool bitWidth point e | e <- eLin]
 eCir = [atan(2**(-i)) | i <- [0..((numIters)-1)]]
 eHyp = [atanh(2**(-i)) | i <- [0..((numIters)-1)]]
 eLin = [(2.0**(-i)) | i <- [0..((numIters)-1)]]
 cir = [cordicIter i bitWidth set linear mode c0 c1 c2 c3 |
 (i, c0, c1, c2, c3) <- zip5 is c0s c1s c2s c3s]
 pipeCir = pipeline numIters numPipes cir (pipeStage clk)

Now, the parameter numPipes is included, which determines the number of pipeline
stages in the design.

6.3 Exercises

1. Provide a specialised version of the CORDIC processor that takes mode, set and lin-
ear as parameters.

2. Use the pipeline function to pipeline the N-bit pattern matcher design.
44

References
6.4 References

[1] J. Volder, “The CORDIC Trigonometric Computing Technique”, IRE Trans. Electronic
Computing, Vol. EC-8, pp330-334, 1959.

[2] J. Walther, “A Unified Algorithm for Elementary Function”, Spring Joint Computer
Conference, pp379-385, 1971.

[3] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers”, FPGA
Conference, 1998.

[4] E. Keller, Dynamic Circuit Specialization of a CORDIC Processor, SPIE Conference,
2000.

[5] “LogiCORE CORDIC Product Specification”, http://www.xilinx.com/ipcenter/catalog/
search/logicore/xilinx_cordic.htm, Xilinx Inc., 2002.

6.5 Appendix

Function floatToBool: converts a floating point number into a list of boolean con-
stants that represent a 2’s complement fixed point number. Parameter n is the precision,
p is the point position and v is the floating point number.

convertBit c w v =
 if c == 0 then
 if d >= 1 then
 [True]
 else
 [False]
 else
 if d >= 1 then
 convertBit (c-1) (w-1) (v-(2**w)) ++ [True]
 else
 convertBit (c-1) (w-1) v ++ [False]
 where
 d = v/(2**w)

floatToBool n p v =
 if v < 0 then convertBit (n-2) (p-2) (v+msb) ++ [True]
 else convertBit (n-2) (p-2) v ++ [False]
 where
 msb = 2**(p-1)

Function computeCordic: software implementation of the CORDIC algorithm.

data Set = Circular
 | Hyperbolic
 | Linear

data Mode = Rotation
 | Vector

computeX i s x y d =
 x - y*m*d*2**(-i)
 where
45

Appendix
 m = case s of Circular -> 1
 Hyperbolic -> -1
 Linear -> 0

computeY i x y d =
 y + x*d*2**(-i)

computeZ i s z d =
 z - d*e
 where
 e = case s of Circular -> atan(2**(-i))
 Hyperbolic -> atanh(2**(-i))
 Linear -> 2**(-i)

computeCordic i ni s m (x,y,z) =
 if i==ni then
 (nx,ny,nz)
 else
 computeCordic (i+1) ni s m (nx,ny,nz)
 where
 nx = computeX i s x y d
 ny = computeY i x y d
 nz = computeZ i s z d
 d = case m of Rotation -> if z<0 then -1
 else 1
 Vector -> if y<0 then 1
 else -1
46

	6 Parametrization
	Figure 6.1 CORDIC processor iteration implementation.

	6.1 Composition
	Figure 6.2 Series composition of the control logic. The brackets indicate the position of the brackets in the input and output types of each composition and wiring function.
	Figure 6.3 Right shift operator bus selection according to the bus width parameter n and the shift parameter i.

	6.2 Pipelining
	Figure 6.4 Parametrized pipelining of the CORDIC processor. The number of iterations is given by the parameter n and the number of pipeline stages by the parameter p. Pipeline registers are inserted every k=n/p iterations.

	6.3 Exercises
	6.4 References
	[1] J. Volder, “The CORDIC Trigonometric Computing Technique”, IRE Trans. Electronic Computing, Vol. EC-8, pp330-334, 1959.
	[2] J. Walther, “A Unified Algorithm for Elementary Function”, Spring Joint Computer Conference, pp379-385, 1971.
	[3] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers”, FPGA Conference, 1998.
	[4] E. Keller, Dynamic Circuit Specialization of a CORDIC Processor, SPIE Conference, 2000.
	[5] “LogiCORE CORDIC Product Specification”, http://www.xilinx.com/ipcenter/catalog/ search/logicore/xilinx_cordic.htm, Xilinx Inc., 2002.

	6.5 Appendix

